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Abstract
The class of solvable Lie algebras with an N-graded nilradical of maximal
nilpotency index is classified. It is shown that such solvable extensions
are unique up to isomorphism. The generalized Casimir invariants for the
N-graded nilradicals and their associated solvable extensions are computed by
the method of moving frames.

PACS numbers: 02.20.Qs, 02.40.Sv, 03.65.Fd

1. Introduction

While semisimple Lie algebras have played a major role in applications to atomic, nuclear and
elementary particle physics, and constitute nowadays a standard tool in these disciplines [1],
solvable Lie algebras were recognized much later to be of interest in physics. Although used
in the classification of gravitational fields [2], their common use has only started in recent
decades, where they have been applied systematically to (completely) integrable systems, in
the formulation of non-Abelian gauge theories or their applications in quantum gravity and
string theories in the low energy limit [3–5]. In contrast to the semisimple case, solvable Lie
algebras over the real field R have been classified only in low dimensions, due to the absence
of global structural properties, as well as the existence of parameterized families [6, 7]. An
important effort in this direction was made by the Kazan school, mainly by Morozov [8] and
his collaborators, who classified real solvable Lie algebras up to dimension 6 [9, 10] (with one
case left that was later solved in [11]) and also analyzed the seven-dimensional case under
certain assumptions [12]. It is worthy to mention that these lists were used in [2], as well as in
other applications to cosmology [13]. In any case, a global classification beyond dimension
6 seems not possible, and the analysis is focused on certain specific classes of algebras of
potential value in applications (see e.g. [14] and references therein). Recently, the classification
of large classes of solvable Lie algebras has recovered interest in the context of integrability
of Hamiltonian systems, by means of the so-called coalgebra symmetry formalism [15, 16].
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For the latter, the exact knowledge of the generalized Casimir invariants is of fundamental
importance. The structure of these invariants in solvable algebras differs radically from the
semisimple case, where they are well known [1]. In particular, for solvable algebras there is
no intrinsic quantity that determines the number of invariants, and it is not unusual to find
non-rational invariants [6]. Invariants of solvable Lie algebras have been obtained in low
dimensions [6, 7, 17–20], as well as for certain families in arbitrary dimension [14, 21–28].
All these results provide large classes that allow the construction of new Hamiltonian systems
with N-degrees of freedom and nonlinear interactions [16].

In this work, we consider the class of nilpotent Lie algebras with maximal nilpotency
index possessing an N-grading. This condition is a relaxation of a natural grading and provides
a larger number of isomorphism classes [29]. It turns out that this class contains the nilpotent
algebras considered in [25] and [14], and also provides parameterized families in dimension
n � 11. Together with [25, 26] and [14], this work finishes the analysis of the most relevant
classes of solvable Lie algebras having nilradicals of maximal degree of nilpotency. It is
shown that the solvable extensions of these N-graded nilradicals are generically characterized
by the derivation induced by the grading. This in particular implies that there is only one class
of solvable Lie algebras extending these nilradicals, as happened with the algebras studied
in [14]. Moreover, the generalized Casimir invariants of these algebras and their solvable
extensions are computed by means of the method of moving frames.

This paper is structured as follows. Sections 2 and 3 present the main facts concerning the
computation of invariants by means of the moving frames method, as well as the classification
of N-graded Lie algebras of maximal degree of nilpotency. In section 4, their Casimir operators
are explicitly obtained. Sections 5 and 6 are devoted to the classification of solvable extensions
and the invariants of these. Finally, the conclusions present some potential applications of
the results obtained and a short overview of the classes of solvable algebras analyzed in the
literature.

We apply the Einstein convention and usual notations for tensor algebra. By
indecomposable Lie algebras we mean algebras that do not split into a direct sum of ideals.
Unless otherwise stated, any Lie algebra considered in this work is defined over the field R.

2. Invariants of Lie algebras and moving frames

The invariant operators of the coadjoint representation of Lie algebras provide important
information on a physical system, like quantum numbers, energy spectra or the existence of
invariant forms. Polynomial invariants are traditionally called Casimir invariants and occur
for semisimple and nilpotent Lie algebras. More generally, algebraic Lie algebras always
admit invariants that are rational. For non-algebraic Lie algebras, specially for those that are
solvable, we find rational or even transcendental invariants. These find wide applications in
(classical) integrable systems [3]. In fact, the algorithm usually applied to compute these
invariants [30, 31], based on a system of linear first-order partial differential equations, does
not exclude the existence of irrational invariants, nor is there any physical reason for the
invariants to be polynomials. In analogy with the classical Casimir operators, nonpolynomial
invariants are called generalized Casimir invariants.

Let {X1, . . . , Xn} be a basis of g and {Ck
ij } be the structure constants over this basis. We

consider the representation of g in the space C∞(g∗) given by

X̂i = −Ck
ij xk∂xj

, (1)
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where [Xi,Xj ] = Ck
ijXk (1 � i < j � n, 1 � k � n). This representation is easily

seen to satisfy the brackets [X̂i, X̂j ] = Ck
ij X̂k . The invariants are functions on the generators

F(X1, . . . , Xn) of g such that

[Xi, F (X1, . . . , Xn)] = 0 (2)

and are found by solving the system of linear first-order partial differential equations:

X̂iF (x1, . . . , xn) = −Ck
ij xk∂xj

F (x1, . . . , xn) = 0, 1 � i � n, (3)

and then replacing the variables xi by the corresponding generator Xi (possibly after
symmetrizing). A maximal set of functionally independent solutions of (3) will be called
a fundamental set of invariants. The cardinal N (g) of such a set can be described in terms of
the dimension and a certain matrix associated with the commutator table. More specifically,
denote by A(g) the matrix representing the commutator table of g over a given basis, i.e.

A(g) = (
Ck

ij xk

)
. (4)

Such a matrix has necessarily even rank by antisymmetry. Then N (g) is given by

N (g) = dim g − rank
(
Ck

ij xk

)
. (5)

This formula was first given in [31]. With respect to the number of independent Casimir
operators of g, formula (5) is merely an upper bound. For high-dimensional Lie algebras, it is
sometimes convenient to work with the analogue of formula (5) in terms of differential forms.
Let L(g) = R{dωi}1�i�dim g be the linear subspace of

∧2
g∗ generated by the Maurer–Cartan

forms dωi of g. If ω = aidωi (ai ∈ R) is a generic element of L(g), there always exists an
integer j0(ω) ∈ N such that

j0(ω)∧
ω �= 0,

j0(ω)+1∧
ω ≡ 0. (6)

This equation shows that r(ω) = 2j0(ω) is the rank of the 2-form ω. We now define

j0(g) = max{j0(ω) | ω ∈ L(g)}. (7)

The quantity j0(g), which depends only on the structure of g, constitutes a numerical invariant
of g [32]. The number of invariants follows from the expression

N (g) = dim g − 2j0(g). (8)

A second method of calculating invariants of group actions that has proven to be of great
interest is based on the Cartan theory of moving frames [33]. A recent reformulation of
this procedure [34] provides an algebraic algorithm for computing the generalized Casimir
operators. We briefly recall here the main features of the moving frame method, according to
the recent formulation of [34]. Let G be a connected Lie group with Lie algebra g and let g∗

denote its dual. The coadjoint representation of G is given by the map Ad∗ : G → GL(g∗)
defined by

〈Ad∗
gx, u〉 = 〈x, Adg−1u〉 x ∈ g∗, u ∈ g,

where Ad denotes the usual adjoint representation of G. A function F ∈ C∞(g∗) is an
invariant of Ad∗

G if F(Ad∗
gx) = F(x) for all g ∈ G and x ∈ g∗. The set of invariants of Ad∗

G

is denoted by Inv(Ad∗
G). If G = Ad∗

G × g∗ denotes the trivial left principal Ad∗
G-bundle over

g∗, then the right regularization R̂ of the coadjoint action of G on g∗ is the diagonal action
of Ad∗

G on G = Ad∗
G × g∗, explicitly given by the map R̂g(Ad∗

h, x) = (Ad∗
h · Ad∗

g−1 , Ad∗
gx),

g, h ∈ G, x ∈ g∗ [33]. We call R̂g the lifted coadjoint action of G. It pulls back to the
coadjoint action on g∗ via the Ad∗

G-equivariant projection πg∗ : G → g∗. A lifted invariant

3
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of Ad∗
G is therefore a local function from G to a manifold invariant with respect to the lifted

coadjoint action. The function I : G → g∗ given by I = I(Ad∗
g, x) = Ad∗

gx is called a
fundamental lifted invariant of Ad∗

G.
Based on this method, a simplified algebraic algorithm to compute invariants was proposed

in [34] and used successfully in [27, 28, 35]. The four steps of this reformulation are as follows.

(i) Determination of the generic matrix B(θ) of an inner automorphism of g on a given basis,
where θ = (θ1, . . . , θr ) denotes coordinates of AdG, and r is the codimension of the center
Z(g) in g.

(ii) Representation of the fundamental lifted invariants: the explicit form of these fundamental
lifted invariants I = (I1, . . . , In) of Ad∗

G in the coordinates (θ, x̌) of Ad∗
G × g∗ is

I = x̌ · B(θ), i.e. (I1, . . . , In) = (x1, . . . , xn) · B(θ1, . . . , θr ).

(iii) Elimination of parameters: a maximal number 2j0(g) of lifted invariants Ij1 , . . . , Ij2j0(g)
,

constants c1, . . . , c2j0(g) and group parameters θk1 , . . . , θk2j0(g)
such that the equations

Ij1 = c1, . . . , Ij2j0(g)
= c2j0(g) are solvable with respect to θk1 , . . . , θk2j0(g)

. Substitution
of the found values of θk1 , . . . , θk2j0 (g) into the lifted invariants provides N (g) functions
F l(x1, . . . , xn) that are independent on the θ ’s.

(iv) Symmetrization: the latter functions F l(x1, . . . , xn) are symmetrized to
Sym(F l(X1, . . . , Xn)) by means of the symmetrization operator Sym(x1 . . . xp) =
1
p!

∑
σ∈Sp

Xσ(1) . . . Xσ(p).

3. N-graded Lie algebras with maximal degree of nilpotency

To any Lie algebra g we can naturally associate various recursive series of ideals:

D0g = g ⊃D1g = [g, g] ⊃ · · · ⊃ Dkg = [Dk−1g,Dk−1g] ⊃ · · · (9)

C0g = g ⊃C1g = [g, g] ⊃ · · · ⊃ Ckg = [g, Ck−1g] ⊃ · · · (10)

called respectively the derived and central descending sequence. Solvability is given whenever
the derived series is finite, i.e. if there exists a k such that Dkg = 0, and nilpotency whenever
the central descending sequence is finite, i.e. if Ckg = 0 for some k. The dimensions of
the subalgebras in both series provide numerical invariants of the Lie algebra. We use the
notation DS and CDS for the dimension sequences of the descending and central descending
sequences, respectively.

Starting from the central descending sequence, we can associate a graded Lie algebra
gr(g) with g, which is defined by gr(g) := ∑

i�0 gi+1, where

gi+1 := Cig

Ci+1g
, i � 0. (11)

It satisfies the condition

[gi , gj ] ⊂ gi+j , 1 � i, j. (12)

A Lie algebra is said naturally graded if g and gr(g) are isomorphic Lie algebras.
It is not difficult to see that the graded algebra associated with any Lie algebra g always

arises as a contraction of the latter. In this sense, (naturally) graded algebras constitute a certain
basic structure that allows the analysis of non-graded structures by means of deformation
theory [37].

For naturally graded nilpotent Lie algebras of maximal nilindex, all solvable extensions
and their invariants have been classified and studied in [25] and [26]. Since the natural grading
is an excessively restrictive condition for nilpotent algebras with maximal nilindex (see [26]
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and references therein), it makes sense to relax it, still requiring some underlying graded
structure. One such possibility is the N-grading, which is deeply related to the structure of
some external derivations. For the case of degree of nilpotency n − 1, it provides various
interesting families of algebras in arbitrary dimension, as well as some parameterized algebras
in low dimensions. Recall that an n-dimensional nilpotent Lie algebra n = ⊕

i�1 ni is called
N-graded if [ni , nj ] = ni+j for 1 � i, j . If we require in addition that the algebra is of
maximal degree of nilpotency n − 1, then dim n1 = 2, dim ni = 1 for i = 2, . . . , n and
[n1, ni] = ni+1 for i � 2. Algebras of this type have appeared in some contexts, such
as the classification of vector fields on the line and the analysis of rigid algebras [38, 39].
The requirement on the nilpotency index implies further that the central series is given by
CDS = [n, n − 2, n − 3, . . . , 2, 1, 0]

Theorem 1. Any N-graded nilpotent Lie algebra n of maximal degree of nilpotency is
isomorphic to one of the following algebras:

(i) nn,1 (n � 3), DS = [n, n − 2, 0] :
[X1, Xj ] = Xj+1, 2 � j � n − 1.

(ii) nn,2 (n � 5), DS = [n, n − 2, 0] :
[X1, Xj ] = Xj+1, 2 � j � n − 1,

[X2, Xj ] = Xj+2, 3 � j � n − 2.

(iii) nn,3 (n � 12), DS = [n, n − 2, n + 2 − 23, n + 2 − 24, . . . , n + 2 − 2j+1, 0], j being
the largest integer such that n + 2 − 2j+1 > 0 :

[Xi,Xj ] = (j − i)Xi+j , 1 � i < j � n − 1.

(iv) nn,4 (n = 2m + 1 � 7), DS = [n, n − 2, 1, 0] :
[X1, Xj ] = Xj+1, 2 � j � n − 1,

[Xi,Xn−i] = (−1)iXn, 2 � i � m.

(v) nn,5 (n = 2m � 8), DS = [n, n − 2, 2, 0] :
[X1, Xj ] = Xj+1, 2 � j � n − 1,

[Xi,Xn−i−1] = (−1)i+1Xn−1, 2 � i � m − 1,

[Xi,Xn−i] = (−1)i+1(m − i)Xn, 2 � i � m − 1.

(vi) nn,6 (n = 2m + 3 � 9), DS = [n, n − 2, 3, 0] :
[X1, Xj ] = Xj+1, 2 � j � n − 1,

[Xi,Xn−i−2] = (−1)iXn−2, 2 � i � m,

[Xi,Xn−i−1] = (−1)i(m − i)Xn−1, 2 � i � m,

[Xi,Xn−i] = (−1)i+1 (i−2)

2 (2m − i − 1)Xn, 3 � i � m + 1.

(vii) n7,α, DS = [7, 5, 1, 0] :
[X1, Xj ] = Xj+1 (2 � j � 6), [X2, X3] = (2 + α)X5,

[X2, X4] = (2 + α)X6, [X2, X5] = (1 + α)X7, [X3, X4] = X7.

(viii) n8,α, DS = [8, 6, 2, 0] :
[X1, Xj ] = Xj+1 (2 � j � 7), [X2, X3] = (2 + α)X5,

[X2, X4] = (2 + α)X6, [X2, X5] = (1 + α)X7, [X2, X6] = αX8,

[X3, X4] = X7, [X3, X5] = X8.

(ix) n9,α

(
α �= − 5

2

)
, DS = [9, 7, 3, 0]

[X1, Xj ] = Xj+1 (2 � j � 8), [X2, X3] = (2 + α)X5, [X2, X4] = (2 + α)X6,

[X2, X5] = (1 + α)X7, [X2, X6] = αX8, [X2, X7] = 2α2+3α−2
2α+5 X9,

[X3, X4] = X7, [X3, X5] = X8, [X3, X6] = 2α−1
2α+5 X9, [X4, X5] = 3

2α+5X9.

(x) n10.α

(
α �= − 5

2

)
, DS = [10, 8, 4, 0] :

5
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[X1, Xj ] = Xj+1 (2 � j � 9), [X2, X3] = (2 + α)X5, [X2, X4] = (2 + α)X6,

[X2, X5] = (1 + α)X7, [X2, X6] = αX8, [X2, X7] = 2α2+3α−2
2α+5 X9,

[X2, X8] = 2α2+α+1
2α+5 X10, [X3, X4] = X7, [X3, X5] = X8,

[X3, X6] = 2α−1
2α+5 X9, [X3, X7] = 2α−1

2α+5 X10, [X4, X5] = 3
2α+5X9,

[X4, X6] = 3
2α+5X10,

(xi) n11,α

(
α �= −3,− 5

2 ,−1
)
, DS = [11, 9, 5, 0] :

[X1, Xj ] = Xj+1 (2 � j � 10), [X2, X3] = (2 + α)X5,

[X2, X4] = (2 + α)X6, [X2, X5] = (1 + α)X7, [X2, X6] = αX8,

[X2, X7] = 2α2+3α−2
2α+5 X9, [X2, X8] = 2α2+α+1

2α+5 X10, [X2, X9] = 2α3+2α2+3
2(α2+4α+3)

X11,

[X3, X4] = X7, [X3, X5] = X8, [X3, X6] = 2α−1
2α+5 X9,

[X3, X7] = 2α−1
2α+5 X10, [X3, X8] = 4α3+8α2−8α−21

2(α2+4α+3)(2α+5)
X11, [X4, X5] = 3

2α+5X9,

[X4, X6] = 3
2α+5X10, [X4, X7] = 3(2α2+4α+5)

2(α2+4α+3)(2α+5)
X11,

[X5, X6] = 3(4α+1)

2(α2+4α+3)(2α+5)
X11.

.

A proof of this result can be found in [29]. It actually enlarges previous analysis of this
class of algebras made in different contexts. We observe that nn,1 is actually naturally graded
and coincides with the nilradical studied in [25]. The Lie algebra nn,2 was the subject of [14]
and has also played an important role in the analysis of stable Lie algebras with nontrivial
cohomology [38]. The algebra nn,3 corresponds to the Lie algebra of polynomial vector fields
on the line [39] and is easily seen to be related with the finite-dimensional quotients of the
Virasoro algebra [40]. The algebras nn,4, nn,5 and nn,6 were already studied in [41] in the
context of stability theory, while the explicit classification of the parameterized families was
first considered in [29].

4. Generalized Casimir invariants of N-graded nilradicals

In this section we determine the Casimir invariants of the N-graded Lie algebras of proposition
1, with the exception of the two first algebras nn,1 and nn,2, which have been exhaustively
analyzed in [25] and [14], respectively. It is convenient to separate the algebras in arbitrary
dimension from the parameterized families in low dimension, as these present a certain number
of particular cases that must be studied separately.

Lemma 1. Let n be isomorphic to nn,k for k = 3, 4, 5, 6. Then the following identities hold:

(i) N (nn,3) =
{

1 for any odd n � 13
2 for any even n � 12

,

(ii) N (nn,4) = 1 for any n = 2m + 1 � 7,

(iii) N (nn,5) = 2 for any n = 2m � 8,
(iv) N (nn,6) = 3 for any n = 2m + 1 � 9.

The proof of these statements follows at once considering the Maurer–Cartan equations
for each algebra. For example, for nn,3 we obtain the equations

dω1 = dω2 = 0,

dωk = ∑
i+j=k(j − i)ωi ∧ ωj , k � 3.

In particular, the 2-form corresponding to the center generator Xn is given by

dωn =
[ n−1

2 ]∑
j=1

(n − 2j)ωj ∧ ωn−j .

6
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Considering the wedge products it is straightforward to verify that
∧[ n−1

2 ] dωn �= 0, thus
j0(nn,3) = [ n−1

2 ]. Using formula (5) the number of invariants is given by

N (nn,3) =
{

2m − 2
[
m − 1

2

] = 2, n = 2m

2m + 1 − 2m = 1, n = 2m + 1
.

Since these algebras are nilpotent, one of the Casimir operators is always given by the
center generator Xn. We thus only need to compute the non-central invariants. As is not
unusual for nilpotent algebras, in spite of the apparent simplicity of their brackets, the non-
central invariants are quite complicated polynomials.

Proposition 1. Let n be isomorphic to nn,k for k = 3, 5, 6.

(i) The non-central Casimir of nn,3 (n = 2m � 12) is given by

C2m,m = xmxm−1
2m +

m−3∑
l=2

l∑
j=0

j∑
p=0

�(l + 1
2 )(−1)l

(l − j)!(1 + j − p)!p!
√

π
x

l−j

2m−1x
1+j−p
m+a x

p

m+bx
m−l−1
2m

− 1

2

[ m
2 ]∑

j=1

(
xm+j x2m−j +

1 + (−1)m

4
x2

3m
2

)
xm−2

2m − (−1)m−2

√
π

�(m − 1
2 )

�(m + 1)
xm

2m−1

+
(−1)m−2

√
π

(
�(m − 3

2 )

�(m − 1)
x2mxm−2

2m−1x2m−2

)
, (13)

where the indices a, b are obtained from the constraint

(1 + j − p)(m + a) + (m + b)p = (2j + 1)m + (l − j). (14)

(ii) The non-central Casimir of nn,5 (n = 2m � 8) is given by

C2m,m = xm
2m−1 +

m−1∑
j=1

(−1)j
m(m − 2)!

(m + 1 − j)!
x2m−1−j x

m−j−1
2m−1 x

j

2m. (15)

(iii) The non-central Casimir invariants of nn,6 (n = 2m + 3 � 9) are given by C2m+3,2 =
2x2m+1x2m+3 − x2

2m+2 and

C2m+3,2m+1 =
m−1∑
j=−1

κm,j x
j+1
2m+1x

2m−1−2j

2m+2 x
j+1
2m+3 +

m∑
l=1


m+1−l , (16)

where 
m+1−l is defined by

κm,m−1x
m+l
2m+3

m∑
j=l

(−1)j+l−1(m − 1)!

(l − 1)!(m − j)!

l∏
k=2

(
j (j − 1) − (k − 1)(k − 2)

2

)
x2m+2−l−j x

m−j

2m+1x
j−l

2m+2

and the coefficients κm,j are given by

κm,j = (−1)m+2j+12j+4�(j + 1
2 − m)

(j + 1)!�(−m − 1
2 )

(17)

for any j = −1, . . . , m − 1.

The proof follows by application of the method of moving frames in its algebraic
reformulation of [34], combined with a recursion argument. We exemplify the procedure

7
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for the Lie algebras nn,5, the remaining cases being solved using an analogous argument. The
lifted invariants are obtained solving the system

[Jk] = [x1, . . . , x2m]
2m∏
i=1

exp (adXiθi) (18)

for the variables θi , i.e. obtaining N (n) functions that do not depend on the parameters θi .
Using the transitivity of matrix multiplication, we can rewrite the previous equation as

[Jk] = ([x1, . . . , x2m] exp (adX1θ1))
∏
i�2

exp (adXiθi).

The vector A = [x1, . . . , x2m] exp (adX1θ1) is explicitly given by[
x1, x2 +

2m∑
l=3

αl,2xl, . . . , xk +
2m∑

l=k+1

αl,kxl, . . . , x2m−1 + α2m,2m−1x2m, x2m

]
,

where the coefficients αl,k are determined by

αj,k =

⎧⎪⎪⎨⎪⎪⎩
1, j = k

1

(j − k)!
θ

j−k

1 , k � 2, j � k + 1

0, otherwise

.

On the other hand, the columns �k of the matrix B = ∏
i�2 exp (adXiθi) are given by

�1 = [1, 0,−θ2, . . . ,−θ2m−3, P1(θ), P2(θ)]T ,

P1(θ) and P2(θ) being the polynomials

P1(θ) =
m−2∑
k=2

θkθ2m−2−k +
(−1)m−1

2
θ2
m+1 − θ2m−2,

P2(θ) =
m−2∑
k=2

(−1)k(m − k)θkθ2m−1−k − θ2m−1,

�k = [0, . . . , δ
j

k , . . . , (−1)kθ2m−1−k, (−1)k(m − k)θ2m−k]T , 2 � k � m − 1,

�m = [0, . . . , δj
m, . . . , (−1)mθm−1, 0]T ,

�m+k = [0, . . . , δ
j

m+k, . . . , (−1)m+kθm−1−k,−(−1)m+kkθm−k]T , 1 � k � m − 3,

�2m−2 = [0, . . . , 0, . . . , 0, 1, 0,−(m − 2)θ2]T ,

�2m−1 = [0, . . . , 0, . . . , 1, 0]T , �2m = [0, . . . , 0, . . . , 0, 1]T .

With these notations, the kth lifted invariant Jk is given by the product

Jk = A�k.

Developing this product for k = 1, . . . , n we get the system

J1 = x1 −
2m−2∑
k=3

θk−1

(
xk +

2m∑
l=k+1

αl,kxl

)
+ (x2m−1 + α2m,2m−1x2m)P1(θ) + P2(θ)x2m,

Jk = xk +
2m∑

l=k+1

αl,kxl + (−1)k(x2m−1 + α2m,2m−1x2m)θ2m−1−k + (−1)k(m − k)θ2m−kx2m

8
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Table 1. N (nj,α) for parameterized families having more than one invariant.

n7,−1 n8,α n9,α n10,α n10,α n11,α
a

α −2, −1, 1
2 �= −1, 1

2 −1, 1
2 − 1

4 , λ0, λ1

N 3 2 3 2 4 3

a λ0 is the real root of 4t3 + 8t2 − 8t − 21 = 0, while λ1 the real root of
2t3 + 2t2 + 3 = 0.

Jm = xm +
2m∑

l=m+1

αl,mxl + (−1)mθm−1(x2m−1 + α2m,2m−1x2m),

Jm+k = xm+k +
2m∑

l=m+k+1

αl,m+kxl + (−1)m+kθm−1−k(x2m−1 + α2m,2m−1x2m) − (−1)m+kθm−kx2m,

J2m−2 = x2m−2 + α2m−1,2m−2x2m−1 + α2m,2m−2x2m − (m − 2)θ2x2m,

J2m−1 = x2m−1 + α2m,2m−1x2m,

J2m = x2m. (19)

We see at once that J2m is an invariant, corresponding to the generator of the center.
Successive elimination of the parameters αj,k from the equations J2m−1, J2m−2, . . . allows us
to obtain a polynomial of degree m that depends only on the coordinates xi.

4.1. The parameterized families

In this paragraph we determine the generalized Casimir invariants for those algebras nj,α of
proposition 1 depending on a continuous parameter. Table 1 gives the number of invariants
for those having non-central Casimir operators. Clearly, for all algebras having only one
invariant, the generator of the center is the Casimir operator. Since all the families have a
one-dimensional center, it is only necessary to give the non-central invariants.

Lemma 2. Let nj,α, j = 7, . . . , 11. Then the non-central Casimir invariants Ci, where the
subindex i denotes the degree, are given by

(i) n7,−1 :
C2 = x2

6 − 2x5x7,

C5 = 3x3
7(x2x7 − x3x6 + x4x5) + 2x5x

3
6x7 − 2

5x5
6 − 3x2

5x6x
2
7 ,

(ii) n8,α :
C4 = α

(
4x4x

3
8 − x4

7 + 4x6x
2
7x8 − 4x5x7x

2
8 − 2x2

6x2
8

)
+ 4x4x

3
8 − x4

7 − 4x2
6x2

8 ,

(iii) n9,−2 :
C2 = 2x7x9 − x2

8 ,

C7 = 210x2x
6
9 − (210x3x8 − 70x4x7)x

5
9 +

(
70x4x

2
8 + 35x6x

2
7 − 70x5x7x8

)
x4

9

− 35
(
x3

7x8x9 + x2
7x

3
8

)
x2

9 − 14x7x
5
8x9 + 2x7

8 ,

(iv) n9,−1 :
C2 = x2

6 − 2x5x7 + 2x4x8 − 2x3x9,

C3 = x3
8 − 3x7x8x9 + 3x6x

2
9 ,

(v) n9, 1
2

:

C2 = 2x7x9 − x2
8 ,

C7 = −35x2x
6
9 − (175x5x6 − 35x3x8 − 105x4x7)x

5
9 − (

70x4x
2
8 + 210x6x

2
7

− 175x2
6x8 − 70x5x7x8

)
x4

9 + 210x3
7x8x

3
9 − 210x2

7x3
8x2

9 + 84x7x
5
8x9 − 12x7

8 ,

9
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(vi) n10,α (α �= −1, 1
2 ) :

C5(α) = 2
5 (2 + α)x5

9 − 2(2 + α)x8x
3
9x10 + (2α + 5)x2

8x9x
2
10 + 2(1 + α)x7x

2
9x10

− (2α + 5)x7x8x
3
10 − (2α − 1)x6x9x

3
10 + (2α − 1)x5x

4
10,

(vii) n10,−1 :
C2 = x2

9 − 2x8x10,

C ′
2 = x2

6 − 2x5x7 + 2x4x8 − 2x3x9 + 2x2x10,

C5(1),

(viii) n10, 1
2

:

C2 = x2
9 − 2x8x10,

C5(
1
2 )

C10 = (1120x2x8 − 1680x3x7 + 1400x2
5 )x8

10 + 1680x2
7x9x10(2x7x10 − 3x8x9)

+ (1680(x4x7x9 − 2x6x
2
7) + 560(x3x8x9 − x2x

2
9) + 2800x2

6x8

+ 1120(x5x7x8 − x4x
2
10))x

7
10 + 1260(x2

7x4
9 + 3x7x

2
8x

2
9)x4

10

− 168x8x
4
9(5x2

8 + 11x7x9)x
3
10 + 8x6

9x2
10(33x7x9 + 91x2

8)

− 215x8x
8
9x10 + 43

2 x10
9 ,

(ix) n11,− 1
4

:

C5 = 45(x6x
4
11 − x7x10x

3
11) + 15(x8x

2
10x

2
11 + x8x9x

3
11 − x2

9x10x
2
11)

+ 5x9x
3
10x11 − x5

10,

C6 = 54(x5x
5
11 + x7x

2
10x

3
11 − x7x9x

4
11 − x6x10x

4
11) − 18x8x

3
10x

2
11 + x6

10

+ 21x2
9x2

10x
2
11 − 6x9x

4
10x11 + 27x2

8x4
11 − 14x3

9x3
11,

(x) n11,λ0 :
C3 = x3

10 − 3x9x10x11 + 3x8x
2
11,

C8 = (4α + 1)(2α + 5)(2α2 + 4α + 5)(2α3 + 2α2 + 3)3x3x
7
11 + · · · ,

(xi) n11,λ1 :
C2 = 2x9x11 − x2

10,

C9 = (4α + 1)(2α2 + 4α + 5)(4α3 + 8α2 − 8α − 21)2x2x
8
11 + · · · .

For C8 and C9 we avoid the explicit expressions of the corresponding invariant, since the
first involves 340 terms and the latter 367.

5. Solvable extensions of nn,i

By the general theory of Lie algebras, any solvable Lie algebra r over the reals admits a
decomposition r = t

−→⊕n satisfying the relations

[t, n] ⊂ n, [n, n] ⊂ n, [t, t] ⊂ n, (20)

where n is the maximal nilpotent ideal (nilradical) of r and −→⊕ denotes the semidirect product.
It was proven in [10] that the dimension of the nilradical satisfies the following inequality
dim n � 1

2 dim r. It follows at once from the Jacobi identity that for any X ∈ t, the adjoint
operator ad(X) acts as a derivation of the nilpotent algebra n. Given a basis {X1, . . . , Xn} of
t and arbitrary scalars α1, . . . , αn ∈ R − {0}, we say that these elements are nil-independent
if for k � 1

(α1ad(X1) + · · · + αnad(Xn))
k �= 0, (21)

that is, the matrix α1ad(X1) + · · · + αnad(Xn) is not nilpotent. The nil-independence of these
basis elements follows from the fact that the nilradical is a maximal nilpotent ideal of r [10].

This fact imposes a first restriction on the dimension of a solvable Lie algebra having
a given nilradical, namely, that dim r is bounded by the maximal number of nil-independent

10
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derivations of the nilradical. This reduces the classification of solvable Lie algebras to
finding all non-equivalent extensions determined by a set of nil-independent derivations. The
equivalence of extensions is considered under the transformations of the type

Xi �→ aijXj + bikYk, Yk �→ RklYl, (22)

where (aij) is an invertible n×n matrix, (bik) is an n×dim n matrix and (Rkl) is an automorphism
of the nilradical n.

Lemma 3. Let n be isomorphic to nn,3, nn,4, nn,5 or nn,6. Then an outer derivation f has the
following form:

(i) if n � nn,3, then

f (X1) = f 1
1 X1 + f n−3

1 Xn−3 + f n−2
1 Xn−2 + f n−1

1 Xn−1,

f (X2) = 2f 1
1 X2 + n2−6n+4

(n−2)(n−3)
f n−3

1 Xn−2 + n−4
n−2f n−2

1 Xn−1,

f (X3) = 3 f 1
1 X3 + n−6

n−2f n−3
1 Xn−1,

f (Xk) = k f 1
1 Xk (4 � k � n);

(ii) if n � nn,4, then

f (X1) = f 1
1 X1 + f 2

1 X2, f (X2) = 2f 1
1 X2 +

∑ n−3
2

t=2 f 2t+1
2 X2t+1 + f n−1

2 Xn−1 + f n
2 Xn,

f (Xk) = k f 1
1 Xk +

∑ n−3
2

t=2 f 2t+1
2 X2t+1−k + f n+2−k

2 Xn (3 � l � n − 2)

f (Xn−1) = (n − 1)f 1
1 Xn−1 + f 2

1 Xn, f (Xn) = nf 1
1 Xn;

(iii) if n � nn,5, then

f (X1) = f 1
1 X1 + f n−3

1 Xn−3 + f n−2
1 Xn−2 + f n−1

1 Xn−1,

f (X2) = 2f 1
1 X2 + n−8

2 f n−3
1 Xn−2 − n−4

2 f n−2
1 Xn−1,

f (X3) = 3 f 1
1 X3 + n−6

2 f n−3
1 Xn−1,

f (Xk) = k f 1
1 Xk (4 � k � n);

(iv) if n � nn,6, then

f (X1) = f 1
1 X1 + f n−3

1 Xn−3 + f n−2
1 Xn−2,

f (X2) = 2f 1
1 X2 − (n − 5)f n−3

1 Xn−2 + f n
2 Xn,

f (X3) = 3 f 1
1 X3 − n−5

2 f n−3
1 Xn−1,

f (Xk) = k f 1
1 Xk (4 � k � n).

Proof. We perform the explicit computations for nn,4, the other algebras being treated
similarly. For convenience we write any derivation f in the form f (Xi) = f

j

i Xj , where the
f

j

i are scalars for any 1 � i, j � n.
The condition [f (X1),X2] + [X1, f (X2)] = f (X3) shows that

f (X3) = (
f 1

1 + f 2
2

)
X3 +

n−2∑
k=3

f k
2 Xk+1 +

(
f n−1

2 − f n−2
1

)
Xn. (23)

Since X2+t = ad(X1)
t (X2) for t � 1, iteration of (23) implies that

f (Xl) = (
(l − 2)f 1

1 + f 2
2

)
Xl +

n+1−l∑
k=3

f k
2 Xk+l−2 +

(
f n+2−l

2 + (−1)l+1f n+1−l
1

)
Xn

11
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for 3 � l � n − 1 and f (Xn) = ((n − 2)f 1
1 + f 2

2 )Xn. The conditions [f (X2),X2t+1] +
[X2, f (X2t+1)] = 0 for 1 � t � n−5

2 further show that f 1
2 = 0 and f n−2t−1

2 = 0. We now
evaluate the Leibniz condition for the pair (X2, Xn−2) to obtain

[f (X2),Xn−2] + [X2, f (Xn−2)] = ((n − 4)f 1
1 + 2f 2

2 )Xn = ((n − 2)f 1
1 + f 2

2 )Xn,

from which we get that f 2
2 = 2f 1

1 . The remaining brackets give no new conditions on the
coefficients f

j

i . Thus any derivation f of nn,4 has the form

f (X1) = f 1
1 X1 +

n∑
l=2

f l
1Xl

f (X2) = 2f 1
1 X2 +

n−3
2∑

t=2

f 2t+1
2 X2t+1 + f n−1

2 Xn−1 + f n
2 Xn

f (Xk) = kf 1
1 Xk +

n−k
2∑

t=2

f 2t+1
2 X2t+1−k + (f n+2−k

2 + (−1)kf n+1−k
1 )Xn (3 � k � n − 2)

f (Xn−1) = (n − 1)f 1
1 Xn−1 + f 2

1 Xn

f (Xn) = nf 1
1 Xn. (24)

We choose the basis of the space of derivations in the following form:

F 1
1 (Xi) = iXi, 1 � i � n

F k
1 (X1) = Xk, F k

1 (Xn+1−k) = (−1)n+1−kXn, 1 � k � n − 1
Fn

1 (X1) = Xn,

F 2t+1
2 (Xk) = Xk+2t−1, 2 � t �

[
n − 3

2

]
, 2 � k � n + 1 − 2t.

It is not difficult to see that the inner derivations ad(Xk) (1 � k � n) correspond to the
following operators:

adX1 = F 3
2 , ad(Xk) = F 1+k

1 , 2 � k � n − 1.

Therefore there are n+3
2 outer derivations, corresponding to the operators {F 1

1 , F 2
1 , F 2t+1

2 , F n−1
2 }

for 2 � t � n−1
2 . �

In particular, there is only one diagonal derivation for the Lie algebras nn,i .

Theorem 2. Any solvable Lie algebra with the N-graded nilradical nn,3, nn,4, nn,5 or nn,6 is
isomorphic to one of the following algebras:

(i) rn,3 (n � 13) :
[T ,Xi] = i Xi, 1 � i � n,

[Xi,Xj ] = (j − i)Xi+j , 1 � i < j � n − 1;
(ii) rn,4 (n = 2m + 2 � 8) :

[T ,Xi] = i Xi, 1 � i � n,

[X1, Xj ] = Xj+1, 2 � j � n − 1,

[Xi,Xn−i] = (−1)iXn, 2 � i � m;
(iii) rn,5 (n = 2m + 1 � 9) :

[T ,Xi] = i Xi, 1 � i � n,

[X1, Xj ] = Xj+1, 2 � j � n − 1,

[Xi,Xn−i−1] = (−1)iXn−1, 2 � i � m − 1,

[Xi,Xn−i] = (−1)i+1(m − i)Xn, 2 � i � m − 1;
12
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(iv) rn,6 (n = 2m + 2 � 10) :
[T ,Xi] = i Xi, 1 � i � n,

[X1, Xj ] = Xj+1, 2 � j � n − 1,

[Xi,Xn−i−2] = (−1)iXn−2, 2 � i � m − 1,

[Xi,Xn−i−1] = (−1)i(m − i)Xn−1, 2 � i � m − 1,

[Xi,Xn−i] = (−1)i+1 (i−2)

2 (2m − i − 1)Xn, 2 � i � m.

Proof. Like before, we only prove the assertion explicitly for the Lie algebra nn,4, the
remaining cases being proved in a completely analogous manner. Let F = α1F

1
1 + α2F

2
1 +∑

k�2 β2k+1
2 F 2k+1

2 + βn−1
2 Fn−1

2 be an outer non-nilpotent derivation of nn,4. A scaling change
allows us to suppose that α1 = 1. By a change of basis of the type

X′
k = Xk, k = 1, n − 1, n,

X′
k = Xk +

[ n−k−1
2 ]∑

t=1

γtXk+2t+1, 2 � k � n − 2

we can successively put to zero the coefficients β5
2 , . . . , β7

2 , . . . , βn−1
2 and βn

2 . This reduces
the derivation to F = F 1

1 + α2F
2
1 . Now a second change of basis of the form

X′
1 = X1 − α2X2, X′

n−1 = Xn−1 − α2Xn,

where the remaining generators remain unchanged, allows us to further suppose that α2 = 0;
thus F is equivalent to the diagonal derivation F 1

1 . �

5.1. Parameterized families

The computation of the derivation algebras for the parameterized algebras nj,α (j = 7, . . . , 11)
follows the same general pattern. However, since the number of derivations varies for some
special values of the parameter α, an explicit description would give too large a number of
special cases, for which reason we omit it here. The main fact is that, like for the Lie algebras
seen before, they only have one diagonal derivation f , and that any non-nilpotent derivation
of nj,α can be reduced to f by means of a change of basis.

Lemma 4. For any j = 7, . . . , 11, any outer non-nilpotent derivation of the family nj,α is
equivalent to the diagonal derivation f (Xk) = kXk , 1 � k � j .

As a consequence of this result, it appears that imposing the condition of a N-grading
implies, with only one exception, that there is only one class of solvable extensions. The
failure for this result to hold for nn,1 is a consequence of the existence of a maximal Abelian
ideal of dimension dim nn,1 − 1 (see [25] and references therein).

6. The generalized Casimir invariants of solvable extensions

We now consider the solvable Lie algebras obtained previously and compute their generalized
Casimir invariants. As done before, for the parameterized families in low dimension we will
give the result in tabular form (see table 2).

Proposition 2. Let r be a solvable extension of nn,3, nn,4, nn,5 or nn,6.

(i) For any n + 1 � 13 we have N (rn,3) = 0 if n is odd, and N (rn,3) = 1 if n is even. In the
latter case n = 2m, the rational invariant is given by

J1 = C2m+2
2m,mx

(m−2m2)
2m .

13
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Table 2. Harmonics for the parameterized families.

r r7,2 r8,α r9,−2 r9,−1 r9, 1
2

r10,α

N (r) 2 1 2 2 2 1

Inv. J1 = C7
2x

−12
7 J1 = C8

4x
−28
10 J1 = C9

3x
−56
9 J1 = C3C

−2
2 J1 = C3

2x
−4
9 J1 = C2

2x
−9
10

J2 = C7
5x

−30
7 J2 = C9

2x
−16
9 J2 = C3

2x
−4
9 J2 = C2

7C
−7
2

r r10,−1 r10, 1
2

r11,− 1
4

r11,λ0 r11,λ1

N (r) 3 3 2 2 2

Inv. J1 = C2
2x

−9
10 J1 = C5

5x
−9
10 J1 = C11

4 x−50
11 J1 = C11

2 x−20
11 J1 = C11

3 x−30
11

J2 = C5
2x

−6
10 J2 = C2

3C
−3
2 J2 = C5

6C
−6
4 J2 = C2

9C
−9
2 J2 = C3

8C
−8
3

J3 = (C ′
2)

3C−2
2 J3 = C10x

−9
10

(ii) For any n+1 = 2m+2 � 8 the Lie algebra rn,4 has no non-trivial invariants (N (rn,4) = 0).
(iii) For n + 1 = 2m + 1 � 9 we have N (rn,5) = 1 and the rational invariant is given by

J1 = C2
2m,mx1−2m

2m .

(iv) For n + 1 = 2m + 4 � 10 we have N (rn,6) = 2, the rational invariants being given by

J1 = C2
n,n−2C

2−n
2 , J2 = Cn

2 x2−2n
n .

Proof. Using the Maurer–Cartan equations of the solvable extensions of the nn,i , it is
straightforward to verify that in all cases we have N (rn,i) = N (nn,i) − 1. This follows at
once observing that the non-nilpotent derivation F 1

1 always acts non-trivially over the center
generator Xn. Further let T be the generator of rn,i associated with the latter derivation.
Since [T ,Xn] = nXn, the differential operator X̂n corresponding to the center generator
is X̂n = −nxn∂t , from which we conclude that the invariants of the solvable algebras rn,i

do not depend on the variable t associated with T. Thus it suffices to solve the equation
T̂ F = ∑n

k=1 kxk
∂F
∂xk

= 0, taking into account the Casimir operators of nn,i already obtained.

(i) rn,3 (n � 12).

The extension has an invariant only if n = 2m, as follows at once from the Maurer–
Cartan equations. Now, from (13) and the vanishing of ∂F

∂t
we see that the system (3)

corresponding to nn,3 is given by

X̂kF = −
k−1∑
l=1

(k − l)xk+l

∂F

∂xl

+
2m−j∑
j=k+1

(j − k)xk+j

∂F

∂xj

, k = 1, . . . , m − 1

X̂m+kF = −
m−k∑
l=1

(m + k − l)xm+k+l

∂F

∂xl

, k = 0, . . . , m − 1. (25)

It follows in particular from this system that ∂
∂xj

F = 0 for any j � m− 1, and the system
reduces to solve the first m − 1 equations. Starting from

X̂m−1F = x2m−1
∂F

∂xm

+ 2x2m

∂F

∂xm+1
= 0,

an iteration process always allows us to express ∂F
∂xm+k

in terms of ∂F
∂xm+k+1

for k =
0, . . . , m − 2. This leads to (rational) functions fk(xm, . . . , x2m) such that

∂F

∂xm+k

= fk(xm, . . . , x2m)
∂F

∂x2m−1
. (26)
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By the Euler theorem for homogeneous functions, we know that for the Casimir operator
C2m,m determined in proposition 2, the following identity holds:

2m∑
k=1

xk

∂C2m,m

∂xk

=
2m∑

k=m

xk

∂C2m,m

∂xk

= m C2m,m. (27)

Taking the differential operator T̂ associated with the generator of the solvable extension,
it is immediate that T̂ (x2m) = 2mx2m, and its action on the Casimir operator C2m,m can
be rewritten as

T̂ (C2m,m) =
2m∑

k=m

kxk

∂C2m,m

∂xk

= m

2m∑
k=m

xk

∂C2m,m

∂xk

+
2m∑

l=m+1

(l − m)xl

∂C2m,m

∂xl

.

Replacing ∂F
∂xm+k

by its expression in (26), we get

T̂ (C2m,m) = m2C2m,m +
2m−1∑
l=m+1

(l − m)xlfl−m(xm, . . . , x2m)
∂C2m,m

∂x2m−1
+ 2mx2m

∂C2m,m

∂x2m

.

A routine but cumbersome computation using the expression of C2m,m further shows that

2m−1∑
l=m+1

(l − m)xlfl−m(xm, . . . , x2m)
∂C2m,m

∂x2m−1
+ 2mx2m

∂C2m,m

∂x2m

= m(m − 1)C2m.m.

Therefore, we obtain that C2m,m is a semi-invariant of the extension with

T̂ (C2m,m) = m(2m − 1)C2m,m.

Now, considering the new variables u = x2m and v = C2m,m, we analyze the differential
equation

∂


∂u
+

(2m − 1)v

2u

∂


∂v
= 0,

with the general solution


 = η(
v2

u2m−1
).

An invariant of the solvable Lie algebra rn,3 can thus be taken as the rational function
J1 = C2

2m,mx1−2m
2m .

(ii) rn,5 (n = 2m).

A similar procedure to that developed above shows that

T̂ (x2m) = 2mx2m, T̂ (C2m,m) = m(2m − 1)C2m,m.

The rational invariant can thus be chosen as

J1 = C2
2m,mx1−2m

2m .

(iii) rn,6; (n = 2m + 3).
For the Casimir operators xn, C2 and Cn,n−2 computed in proposition 2, we obtain that

T̂ (xn) = nxn, T̂ (C2) = 2(n − 1)C2, T̂ (Cn,n−2) = (n − 1)(n − 2)Cn,n−2.

Therefore, the invariants can be chosen as the following rational functions:

J1 = C2
n,n−2C

2−n
2 , J2 = Cn

2 x2−2n
n .

�
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7. Conclusions

We have determined all solvable Lie algebras having an N-graded nilradical nn,i with maximal
degree of nilpotency. This class of nilpotent algebras in particular encompasses the algebras
nn,1 and nn,2 considered in [25] and [14]. However, the latter algebras differ structurally
from the remaining N-graded algebras, in the sense that the former have Abelian ideals of
codimension 2, while the algebras nn,i for i = 3, 4, 5, 6 do not have Abelian subalgebras
whose dimension exceeds [ dim nn,i

2 ]. This explains why these algebras have such a low number
of invariants. These are computed by means of the method of moving frames, following the
algebraic procedure of [34]. Like in the case of nn,2, we find that there is only one class of
solvable extensions for the algebras nn,i , determined by the derivation that is induced by the
N-grading. Since the action of this derivation is always non-zero on the center of the nn,i , the
solvable extensions only have harmonics as invariants, i.e. they do not admit classical Casimir
operators.

The algebras obtained, as well as the classes of [14], have potential applications in the
construction of new Hamiltonian systems by the coalgebra method [15], using an appropriate
symplectic realization [16], as well as in the analysis of constant potential solutions to the
Yang–Mills equations and the analytical properties of Euler equations on solvable Lie algebras
[42]. An interesting question in this direction is whether from the families obtained new
(gauged) WZNW models on solvable Lie algebras can be extracted [43]. Although none of
the algebras nn,i themselves have a non-degenerate quadratic Casimir operator, they contain
subalgebras having this property. For example, as follows at once from the expression of
the quadratic Casimir operator of g9,−1 and g10,−1, the subalgebra spanned by {X2, . . . , X9}
({X2, . . . , X10}, respectively) is self-dual, and therefore admits such models. Further, the
formal similarity between nn,3 and the family of Lie algebras considered in [43] suggests that
among the lattice of subalgebras of the former further models sharing structural similarities
with those of [43] can be obtained. Additional constraints like singular or null gauging may
also arise from the analysis of these Lie algebras.

Finally, we should remark that in [14, 25] and in this paper, we complete the analysis of
solvable Lie algebras with an N-graded nilradical of maximal nilpotency degree. In addition,
some other general classes of solvable Lie algebras and their invariants in arbitrary dimension
have been classified following a similar procedure (see [14] and references therein for further
details), such as

(i) solvable Lie algebras with naturally graded nilradical of nilpotency degree n− 1 [25, 26];
(ii) solvable Lie algebras with Abelian nilradical [22];

(iii) solvable Lie algebras with Heisenberg nilradical [36];
(iv) solvable Lie algebras with triangular nilradicals [21, 23, 28];
(v) certain classes of stable Lie algebras [24]; and

(vi) classes of solvable Lie algebras whose n-dimensional nilradicals have a nilpotency degree
n − 2 or n − 3 [44, 45].

The preceding (non-exhaustive) list covers the main types of general nilradicals that
are completely classified. Due to the impossibility of general classifications, in order to
extend these results to other classes of solvable Lie algebras, different criteria for the choice
of the nilradical should be considered. In this context, nilpotent Lie algebras that possess
some grading are adequate candidates for this purpose, since they often have additional
properties that are potentially useful for establishing models for different physical phenomena.
One of such properties is e.g. the possibility of constructing Lie algebras adapted to a
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predetermined invariant metric (or the quadratic Casimir operator), which allows us to find
suitable generalizations of σ -model background fields that are already known [43].
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